BC846 THRU BC849 ### **Small Signal Transistors (NPN)** Pin configuration 1 = Base, 2 = Emitter, 3 = Collector. #### **FEATURES** - NPN Silicon Epitaxial Planar Transistors for switching and AF amplifier applications. - Especially suited for automatic insertion in thick- and thin-film circuits. - These transistors are subdivided into three groups A, B and C according to their current gain. The type BC846 is available in groups A and B, however, the types BC847 and BC848 can be supplied in all three groups. The BC849 is a low noise type available in groups B and C. As complementary types, the PNP transistors BC856...BC859 are recommended. #### **MECHANICAL DATA** Case: SOT-23 Plastic Package Weight: approx. 0.008 g Marking code | Туре | Marking | |--------|---------| | BC846A | 1A | | B | 1B | | BC847A | 1E | | B | 1F | | C | 1G | | Туре | Marking | |----------------------------|----------------------------| | BC848A
B
C
BC849B | 1J
1K
1L
2B
2C | #### MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS Ratings at 25 °C ambient temperature unless otherwise specified | | | Symbol | Value | Unit | |--|--------------------------------|--|----------------|-------------| | Collector-Base Voltage | BC846
BC847
BC848, BC849 | V _{CBO}
V _{CBO} | 80
50
30 | V
V
V | | Collector-Emitter Voltage | BC846
BC847
BC848, BC849 | V _{CES}
V _{CES}
V _{CES} | 80
50
30 | V
V
V | | Collector-Emitter Voltage | BC846
BC847
BC848, BC849 | V _{CEO}
V _{CEO} | 65
45
30 | V
V
V | | Emitter-Base Voltage | BC846, BC847
BC848, BC849 | V _{EBO} | 6
5 | V
V | | Collector Current | | Ic | 100 | mA | | Peak Collector Current | | I _{CM} | 200 | mA | | Peak Base Current | | I _{BM} | 200 | mA | | Peak Emitter Current | | -I _{EM} | 200 | mA | | Power Dissipation at T _{SB} = 50 °C | | P _{tot} | 3101) | mW | | Junction Temperature | | Tj | 150 | °C | | Storage Temperature Range | | T _S | -65 to +150 | °C | | 1) Device on fiberglass substrate, see layer | out | I I | | | # **BC846 THRU BC849** #### **ELECTRICAL CHARACTERISTICS** Ratings at 25 °C ambient temperature unless otherwise specified | | | Symbol | Min. | Тур. | Max. | Unit | |--|--|--|----------------------|--|--------------------------|----------------------------------| | h-Parameters at V _{CE} = 5 V, I
f = 1 kHz,
Small Signal Current Gain
Curr | _C = 2 mA,
ent Gain Group A
B | h _{fe}
h _{fe} | | 220
330 | -
- | _
_ | | | ent Gain Group A
B
C | h _{fe}
h _{ie}
h _{ie}
h _{ie} | -
1.6
3.2
6 | 600
2.7
4.5
8.7 | -
4.5
8.5
15 | -
kΩ
kΩ
kΩ | | Output Admittance Curr | ent Gain Group A
B
C | h _{oe}
h _{oe}
h _{oe} | -
- | 18
30
60 | 30
60
110 | μS
μS
μS | | Reverse Voltage Transfer Ra
Curr | tio
ent Gain Group A
B
C | h _{re}
h _{re}
h _{re} | -
- | 1.5 · 10 ⁻⁴
2 · 10 ⁻⁴
3 · 10 ⁻⁴ | -
-
- | -
-
- | | DC Current Gain at $V_{CE} = 5$ V, $I_{C} = 10 \mu A$ Current $V_{CE} = 5$ V, $I_{C} = 2 \mu A$ | ent Gain Group A
B
C | h _{FE}
h _{FE} | -
- | 90
150
270 | -
-
- | -
-
- | | Curr | ent Gain Group A
B
C | h _{FE}
h _{FE}
h _{FE} | 110
200
420 | 180
290
520 | 220
450
800 | -
-
- | | Thermal Resistance Junction Backside | n to Substrate | R _{thSB} | - | - | 3201) | K/W | | Thermal Resistance Junction | n to Ambient Air | R _{thJA} | _ | - | 450 ¹⁾ | K/W | | Collector Saturation Voltage at $I_C = 10$ mA, $I_B = 0.5$ mA at $I_C = 100$ mA, $I_B = 5$ mA | | V _{CEsat}
V _{CEsat} | 1 1 | 90
200 | 250
600 | mV
mV | | Base Saturation Voltage at $I_C = 10$ mA, $I_B = 0.5$ mA at $I_C = 100$ mA, $I_B = 5$ mA | | V _{BEsat}
V _{BEsat} | 1 1 | 700
900 | -
- | mV
mV | | Base-Emitter Voltage at $V_{CE} = 5 \text{ V}$, $I_{C} = 2 \text{ mA}$ at $V_{CE} = 5 \text{ V}$, $I_{C} = 10 \text{ mA}$ | | V _{BE}
V _{BE} | 580
- | 660
- | 700
720 | mV
mV | | Collector-Emitter Cutoff Cur
at $V_{CE}=80~V$
at $V_{CE}=50~V$
at $V_{CE}=30~V$
at $V_{CE}=80~V$, $T_j=125~C$
at $V_{CE}=50~V$, $T_j=125~C$
at $V_{CE}=30~V$, $T_j=125~C$ | BC846
BC847
BC848, BC849
BC846
BC847
BC848, BC849 | ICES ICES ICES ICES ICES ICES | - | 0.2
0.2
0.2
-
- | 15
15
15
4
4 | nA
nA
nA
μA
μA
μA | | Gain-Bandwidth Product
at V _{CE} = 5 V, I _C = 10 mA, f = | 100 MHz | f _T | - | 300 | - | MHz | | 1) Device on fiberglass subst | trate, see layout | | | <u> </u> | | | # **BC846 THRU BC849** #### **ELECTRICAL CHARACTERISTICS** Ratings at 25 °C ambient temperature unless otherwise specified | | Symbol | Min. | Тур. | Max. | Unit | |--|------------------|------|----------|---------|----------| | Collector-Base Capacitance at V _{CB} = 10 V, f = 1 MHz | C _{CBO} | - | 3.5 | 6 | pF | | Emitter-Base Capacitance at $V_{EB} = 0.5 \text{ V}$, $f = 1 \text{ MHz}$ | C _{EBO} | - | 9 | - | pF | | Noise Figure at $V_{CE}=5$ V, $I_{C}=200$ $\mu A,~R_{G}=2$ k $\Omega,~f=1$ kHz, $\Delta f=200$ Hz BC846, BC847, BC848 BC849 | F
F | | 2
1.2 | 10
4 | dB
dB | | at $V_{CE} = 5$ V, $I_{C} = 200~\mu A$, $R_{G} = 2~k\Omega$, $f = 3015000~Hz$ | F | _ | 1.4 | 4 | dB | Layout for R_{thJA} test Thickness: Fiberglass 0.059 in (1.5 mm) Copper leads 0.012 in (0.3 mm) #### **RATINGS AND CHARACTERISTIC CURVES BC846 THRU BC849** Admissible power dissipation versus temperature of substrate backside Device on fiberglass substrate, see layout DC current gain versus collector current #### Pulse thermal resistance versus pulse duration (normalized) Device on fiberglass substrate, see layout # Collector-Base cutoff current versus ambient temperature #### **RATINGS AND CHARACTERISTIC CURVES BC846 THRU BC849** # Collector current versus base-emitter voltage Collector base capacitance, Emitter base capacitance versus reverse bias voltage ## Collector saturation voltage versus collector current Relative h-parameters versus collector current #### **RATINGS AND CHARACTERISTIC CURVES BC846 THRU BC849** # Gain-bandwidth product versus collector current Noise figure versus collector current # Noise figure versus collector current Noise figure versus collector emitter voltage