BGA416

RF Cascode Amplifier

Wireless Silicon Discretes

Edition 2002-06-14

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2002 All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

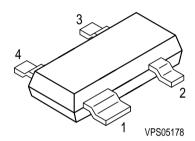
BGA416 Data sheet Revision H		2002-06-14		
Previous Vo	ersion:	2001-10-30		
Page	Subjects (major changes since last revision)			
	Preliminary status removed			

For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com

We Listen to Your Comments

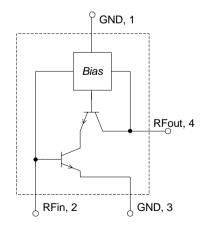
Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com



RF Cascode Amplifier

BGA416


Features

- G_{MA} = 23dB at 900MHz
- Ultra high reverse isolation, 62 dB at 900MHz
- Low noise figure,
 F_{50Ω} = 1.3dB at 900MHz
- On chip bias circuitry,
 5.5 mA bias current at V_{CC} = 3V
- Typical supply voltage: 2.5 to 5.0V
- SIEGET®-25 technology

Applications

- Buffer amplifiers
- LNAs
- · Oscillator active devices

Description

BGA416 is a monolithic silicon cascode amplifier with high reverse isolation. A bias network is integrated for simplified biasing.

ESD: Electrostatic discharge sensitive device, observe handling precaution!

Туре	Package	Marking	Chip
BGA416	SOT143	C1s	T0553

Maximum Ratings

Parameter	Symbol	Value	Unit
Voltage at pin RFout	V _{OUT}	6	V
Current into pin RFin	I _{IN}	0.5	mA
Device current 1)	I _D	20	mA
Input power	P _{IN}	8	dBm
Total power dissipation, T _S < 123°C ²⁾	P _{tot}	100	mW
Junction temperature	T _j	150	°C
Ambient temperature range	T _A	-65 + 150	°C
Storage temperature range	T _{STG}	-65 + 150	°C
Thermal resistance: junction-soldering point	$R_{th JS}$	270	K/W

Notes:

All Voltages refer to GND-Node

Electrical Characteristics at T_A =25°C (measured in test circuit specified in fig. 1) V_{CC} =3V, unless otherwise specified

Parameter		Symbol	min.	typ.	max.	Unit
Maximum available power gain	f=0.9GHz f=1.8GHz	G _{MA}		23 14		dB
Insertion power gain	f=0.9GHz f=1.8GHz	$ S_{21} ^2$		17 11		dB
Reverse isolation	f=0.9GHz f=1.8GHz	S ₁₂		62 40		dB
Noise figure ($Z_S=50\Omega$)	f=0.9GHz f=1.8GHz	F _{50Ω}		1.3 1.6		dB
Output power at 1dB gain comp $(Z_S=Z_L=50\Omega)$	ression f=0.9GHz f=1.8GHz	P _{-1dB}		-3 -3		dBm
Output third order intercept point $(Z_S=Z_L=50\Omega)$	t f=0.9GHz f=1.8GHz	OIP ₃		14 14		dBm
Device current		I _D		5.5		mA

5

Data sheet

¹⁾ Device current is equal to current into pin RFout

 $^{^{2)}\,}T_{S}$ is measured on the ground lead at the soldering point

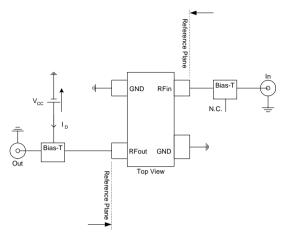
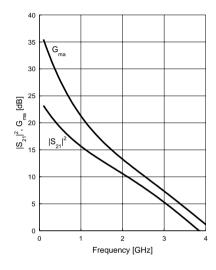
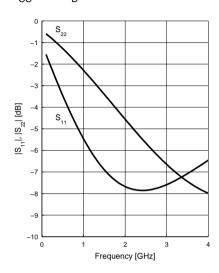
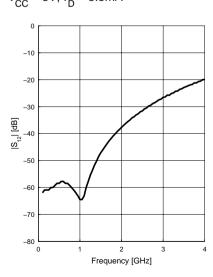


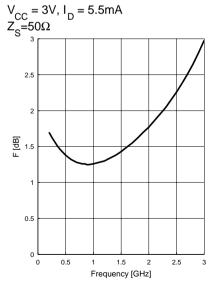
Fig. 1: Test Circuit for Electrical Characteristics and S-Parameter


S-Parameter V_{CC} =3V, I_D =5.5mA (see Electrical Characteristics for conditions)

Frequency	S11	S11	S21	S21	S12	S12	S22	S22
[GHz]	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
0.1	0.7881	-6.9	12.1310	166.8	0.0017	10.9	0.8974	-4.9
0.2	0.7832	-13.3	11.9280	156.0	0.0004	-16.6	0.8895	-9.0
0.4	0.6986	-23.8	10.3940	134.3	0.0009	41.6	0.8708	-17.5
0.6	0.6335	-31.4	8.9867	116.3	0.0016	20.7	0.8489	-25.7
0.8	0.5666	-37.3	7.5805	100.8	0.0006	-5.4	0.8143	-34.2
1.0	0.5158	-41.6	6.4187	87.7	0.0006	-7.2	0.7776	-42.1
1.2	0.4744	-44.5	5.4350	76.6	0.0014	-103.4	0.7257	-49.6
1.4	0.4503	-47.4	4.6957	66.2	0.0034	-132.9	0.6850	-56.7
1.6	0.4272	-50.4	4.0607	57.5	0.0059	-143.2	0.6530	-64.0
1.8	0.4204	-53.3	3.5686	49.2	0.0092	-152.6	0.6195	-71.1
2.0	0.4056	-56.4	3.1353	41.0	0.0129	-156.9	0.5867	-78.2
2.4	0.4071	-63.5	2.4957	26.7	0.0233	-170.1	0.5298	-92.9
3.0	0.4168	-78.1	1.7687	6.0	0.0465	171.9	0.4562	-117.4
4.0	0.4615	-110.1	0.9839	-24.7	0.1017	143.4	0.3892	-163.8
5.0	0.5467	-148.7	0.4451	-46.1	0.1758	113.0	0.3894	152.0
6.0	0.6187	176.8	0.1983	-21.9	0.2483	84.2	0.4008	120.6

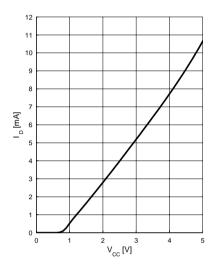

Data sheet 6


Power Gain
$$|S_{21}|^2$$
, $G_{ma} = f(f)$
 $V_{CC} = 3V$, $I_{D} = 5.5mA$

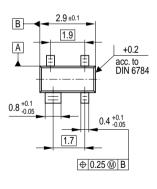

$$\begin{aligned} & \textbf{Matching} \ |S_{11}|, \ |S_{22}| = f(f) \\ & V_{CC} = 3V, \ I_D = 5.5 \text{mA} \end{aligned}$$

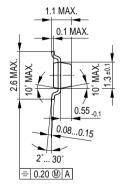
Reverse Isolation
$$|S_{12}| = f(f)$$

 $V_{CC} = 3V$, $I_D = 5.5mA$



Noise figure
$$F = f(f)$$





Device Current $I_D = f(V_{CC})$

Package Outline

