BMR - 0302

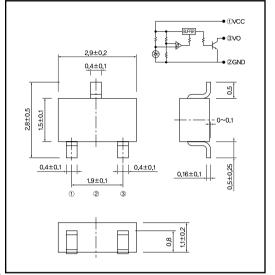
BMR-0302 is the low reset type of IC that guarantee to set again micro **DIMENSIONS** computers or logic systems by detecting the intermittent of fluctuating power supply voltage during normal use or switching on/off of theequipments.

A comparator type of hysteresis transistor developed by KODENSHI is built in the IC, so that BMR - 0302 is very cost effective components. And, BMR-0302 is a super-low consumption electric current system reset IC which has been developed with using high resistance process.

FEATURES

- Super-low current consumption
- Low operation voltage
- High current of output transistor
- · Hysteresis circuit built in
- It has on delay function to supplement the constant of outer C and R
- A package is SOT 23 of the super miniature surface mounting type

APPLICATIONS

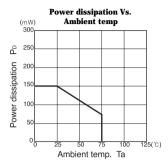

- Micro computer circuits in mobile phones, word processors, TVs, VCRs
- · General logic circuits
- Detection of voltage drop in batteries of note personal computers, mobile phones
- · Switching to backup power supply

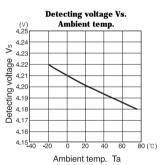
MAXIMUM RATINGS

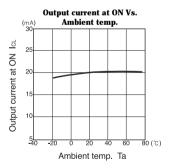
(Ta=25

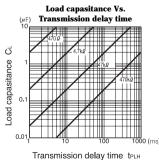
Item	Symbol	Rating	Unit
Supply voltage	Vcc	-0.3~+10.0	V
Power dissipation	P□	150	mW
Operating temp.	Topr.	- 20~+75	
Storage temp.	Tstg	- 40~ +125	

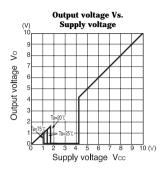
(Unit : mm)

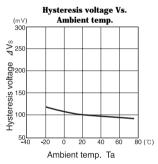


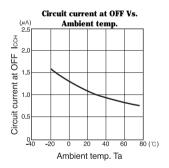

ELECTRO-OPTICAL CHARACTERISTICS

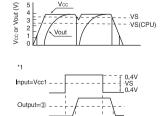

(Vcc=5V,Ta=25)

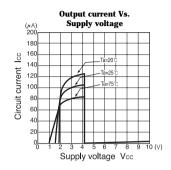

ŀ	tem	Symbol	Conditions	Min.	Тур.	Max.	Unit.
Detecting Voltage Detecting Voltage BMR- BMR- BMR- BMR- BMR- BMR-	BMR - 0302C	Vs	Rt = 470 ,Vcc = H L,Vot 0.4V	4.3	4.5	4.7	V
	BMR - 0302D			4.0	4.2	4.4	
	BMR - 0302E			3.7	3.9	4.1	
	BMR - 0302F			3.4	3.6	3.8	
	BMR - 0302G			3.1	3.3	3.5	
	BMR - 0302H			2.9	3.1	3.3	
	BMR - 0302I			2.75	2.9	3.05	
	BMR - 0302J			2.55	2.7	2.85	
	BMR - 0302K			2.35	2.5	2.65	
	BMR - 0302L			2.15	2.3	2.45	
Hysteresis voltage		Vs	R₁ = 470 , Vcc = L H L	40	100	300	mV
Temperature coefficie	ent of detecting voltage	Vs / T	$R_{\perp} = 470$, $Ta = -20 \sim 75$	-	±0.01	-	%/
Low level output volta	ige	Vol	$R_{\perp} = 470$, $V_{CC} = V_S Min$.	-	0.1	0.4	V
Circuit current at ON		Icc.	RL = ,Vcc = Vs Min.	-	100	180	μA
Circuit current at OFF		ссн	$R_{\perp} = ,V_{cc} = V_s Max + 0.1V$	-	1.0	2.5	μA
Threshold operating v	voltage	Vopl	RL = 4.7k , Vol 0.4V	-	1.4	1.6	V
Output current at ON	1	lol 1	$R_L = 0$, $V_{CC} = V_S Min$.	10	20	-	mA
Output current at ON 2		lor 2	$R_{\perp} = 0$, $Ta = -20 \sim 75$	5	-	-	mA
Transmission delay ti	me	t PLH	R [⊥] =4.7k ,CL =100pF	-	100	500	μsec
Transmission delay ti	me	t PHL	R [⊥] =4.7k ,CL =100pF	-	10	20	μsec

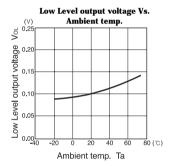

BMR - 0302

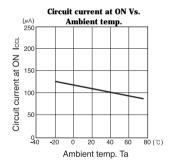












Timing chart

Vcc : V VScpu : Reset threshold voltage of CPU,MPU CL : μ F RL : kQ

Caution) It is desirable that Capacitor be built between

① and ② terminal when high impedence of V_{cc}
line, unstable power line or high ripple occurence
to expected.